Anti-inflammatory activity and chemical compositions of essential oil of Achillea fragmmentissma

Eman Elsharkawy^{1,2}

¹Department of Environment and plant pasture, Desert Research Center, Mathef El-Mataria, Egypt.

Correspondence to: Eman Elsharkawy, E-mail: elsharqawyeman@hotmail.com

Received February 23, 2016. Accepted March 16, 2016

ABSTRACT

Background: At present, there are considerable scientific evidences to suggest that nutritive and non-nutritive plant-based dietary factors can inhibit the process of carcinogenesis effectively. Aims and Objective: The aim of the present study was to use essential oils extracted by different methods from Achillea fragrantissima (hexane extract [HE] and oil extract [OE]) in the manufacture of soap, which can be used as anti-inflammatory agent. Materials and Methods: The anti-inflammatory effect of volatile oil was studied using carrageenan induced paw edema method at 100 mg/kg dose orally. Furthermore, it also studies the chemical composition of Achillea extracts by GC-MS. Results: This study demonstrated that extracts of Achillea fragrantissima have excellent anti-inflammatory properties. Of the two extracts analyzed by gas chromatography-mass spectrometry (GC-MS), there were differences in the chemical composition of essential oil of two extracts. Bisabolol, bisabolol oxide, menthol, and β -caryophyllene are the major constituents of the Achillea extract, some compounds were found in OE and not found in HE. Conclusion: Our observations supports Achillea fragrantissima which is used by many people in the northern region for medicinal uses, it is safe and it can be used as anti-inflammatory drug.

KEY WORDS: Anti-inflammatory; Natural Soap;

Introduction

Natural products once served humankind as the source of all drugs, and higher plants provided most of these therapeutic agents.

Plants provided most of these therapeutic agents. Now, natural product derivatives still represent over 50% of drugs in clinical use, with higher-plant-derived natural products representing 25% of the total. The World Health Organization estimates that 80% of the people in developing countries of the world depend on traditional medicine for their primary health

Access this article online				
Website: http://www.njppp.com	Quick Response Code:			
DOI: 10.5455/njppp.2016.6.23022016130				

care, and about 85% of traditional medicines involve the use of plant extracts. This means that about 3.5 to 4 billion people in the world depend on plants as herbal drugs.^[2]

The genus *Achillea*, consisting of 140 perennial herbs, which is used traditionally in Middle Eastern countries, for treating digestive problems, diseases of liver and gallbladder, menstrual irregularities, cramps, fever, and for healing wounds.^[3]

Achillea fragrantissima, family Asteraceae, is a common plant in the Mediterranean region and easily found growing in fields and on roadsides. It contains high percentage of flavonoids, tannins, volatile oils, sterols, triterpenes, unsaturated amides, and sesquiterpene lactones. Achillea was highly valued as a medicinal plant for its antiseptic properties. It was used to cover cuts and sores and hasten scar tissue formation; the clinical use of Achillea fragrantissima is not described. [4]

Achillea fragrantissima grows in dry areas, steppe, and desert. People collect it in the Badia region, where it is common. It is the last species of Achillea to flourish, it has

National Journal of Physiology, Pharmacy and Pharmacology Online 2016. © 2016 Eman Elsharkawy. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.

²Department of Chemistry, Science Faculty, Girls section, Northern Border University-Arar, North Region, Saudi Arabia.

a strong smell and an astringent taste, for this reason it is usually mixed with sugar, but the flowers can be eaten alone, for diabetes, stomach (alone, or mixed with *Teucrium polium*), muscular rheumatism (fumigation), cough (drinking in the morning with sugar).^[5]

Chemical analysis revealed that *Achillea* genus contains volatile oils, mainly azulene, it also contains several known anti-inflammatory compounds such as flavonoids. $^{[6]}$

The anti-inflammatory effect of volatile oil extracted by hydrodistillation of *Achillea fragrantissima* was studied using carrageenan-induced paw edema. Essential oil (100 mg/kg and 200 mg/kg) was tested; the plant shows high inhibition at 200 mg/kg than 100 mg/kg after $4 \text{ h.}^{[7]}$

Pervious review shows the importance of known medicinal plant used by many people in the northern region, the used to drink it with a tea (Alqausom in Arabic). *Achillea fragrantissima* is used by Bedouins in the treatment of fever and for wound healing, so the study of anti-inflammatory effect of the plant extract is important for discovering new drug. The aim of present study, are extraction of volatile oil by two different methods and, differentiate quantitative and quantitative between these methods we use the oil extract (OE) in manufacture of (soap) to used it as anti-inflammatory drug.

MATERIAL AND METHODS

Plant Material

The sample (*Achillea fragrantissima*) plant was collected from north region, Arar-turaif road, in spring season where the plant was flowering; plant sample was identified in the Botany Department, Faculty of Science, Northern Border University.

Preparation of Extracts

Oil extract: The plant sample was collected from north region, 0.6 kg of arial part of the plant was cleaned and grounded to a fine powder, percolated in 1000 mL of olive oil for 15 days. After 15 days, the mixture was filtered, then the filtrate was kept till used.

Hexane extract: The plant powder was filtered and solvent was evaporated under reduced pressure.

Analysis

The constituents of the volatile oils obtained from OE and HE were analyzed by gas chromatography-mass spectrometry (GC-MS) as reported by El-Shazly et al. [8] Compounds were identified by comparison of their retention indices (RI), (C9–C24 n-alkane mixture) and mass spectra as mentioned in literature. [9–12]

Anti-inflammatory: The method developed by Agbaje, [13] was employed. Albino Wistar rats of both sex (120–130 g) were randomized to four groups. Animals were deprived of food for 12 h before the experiment and only water was given ad-libitum.

 First group (control group) received 1 mL of distilled water (10 mL/kg)

- Second group received indomethacin (10 mg/kg) suspended in distilled water
- Third group received HE at a dose of 100 mg/kg orally dissolved in distilled water
- Fourth group received OE at a dose of 100 mg/kg orally dissolved in distilled water

After 1 h of administration of the treated extracts, carrageenan suspension (0.1 mL of 1% w/v suspended in 0.9% saline solution) was injected into the subplantar region of the left hind paw of the animals. Directly, the paw volume was measured; initial paw volume was measured using plethysmometer (UGO Basile, 21025 Comerio, Italy) before carrageenan injection. Thereafter, the paw volume was measured after 1, 2, 3, and 4 h after carrageenan administration. The difference between initial and subsequent readings gave the change in edema volume for the corresponding time. Edema volume of control (V_c) and volume of treated (V_t) were used to calculate percentage (%) inhibition and percentage edema volume using Eq. (1).

% Inhibition =
$$[1-(V_t/V_c)] \times 100 (1)$$

Statistical Analysis

Data were subjected to SPSS (ver. 8.0). P < 0.05 was regarded as significant.

Soap Manufacturing Process

The soap was produced from OE according to the method by Selinger. $^{[14,15]}$

Soaps and detergents are widely used in our society, So, can use this soap for the treatment of skin inflammation. Soap is the product of reaction between a fat and sodium hydroxide:

Fat + 3NaOH → glycerine + 3 soap Soap is produced industrially in four basic steps.

Step 1—Saponification

OE of *Achellia fragrantissima* is treated with sodium hydroxide (160 g) and the soap produced is the salt of a long-chain carboxylic acid.

Step 2—Glycerine removal

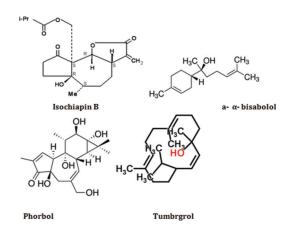
Glycerine is more valuable than soap, so most of it is removed. Some is left in the soap to help make it soft and smooth.

Step 3—Soap purification

Any remaining sodium hydroxide is neutralized with a weak acid such as citric acid and two-thirds of the remaining water removed.

Step 4—Finishing

Additives such as preservatives, color can added and mixed in with the soap then is shaped into cups.


Table 1: Chemical	constituents	of essential	oil	extracts	of (Achillea	
fragrantissima) by	GC-MS						

Chemical compound	Structure	AF Hexane extract	AF Oil extract
Eucalyptol	C10H18O	0.28	_
Santolina Alchol	C10H18O		0. 3
Camphor	C10H16O	4.8	
Viridiflorol	C15H26O	2.95	
Oxazolidine	C3H7NO	0.93	
Benzyl alcohol	C7H8O	0.46	1.6
Limonene oxide	C10H16O	2.93	
Limonene	C10H16	2.9	1.62
Limonene dioxide	C10H16O2		1.52
β-Caryophyllene	C15H24	2.0	0.87
Caryophllene oxide	C15H22O2	1.54	1.84
Globulol	C15H26O	6.51	
Thunbergol	C20H34O	8.95	
α-Selinene	C15H24	1.2	
α -Humulene	C15H24	0.28	0.67
Flacarinol	C17H24O	1.35	
α -Phellandrene	C10H16	_	0.38
Thujol	C10H18O	0.39	
Thujone	C10H16O	_	0.30
Lanceol	C18H360	0.86	0.86
Bergamotol	C15H24O		0.86
Cederne	C15H24	-	0.36
α -Cubebene	C15H24	-	0.36
α-Bisabolol	C15H26O	-	1.95
Geramcerene B		-	0.1
Azulene	C10H8	1.36	0.67
Spathulenol	C15H24O	-	0.08
Farnesol	C15H24O	-	0.27
Gerinol	C10H18 O	-	0.12
α-Tocopherol	C29H50 O	-	0.08
¥-Tocopherol	C29H50 O	-	0.08
Bisbolone epoxide	C15H24 O	-	1.54
Menthol	C10H20 O	1.35	1.5
Phorbol	C20H28O6	-	1.2
Isochiapin-B	C19H22O6	1.0	2.0
$\beta\text{-Sesquiphellandrene}$	C15H24	-	0.4
Coumarin	С9Н6О2	_	0.9

RESULTS

Anti-inflammatory study of two extracts of Achillea plant collected from north region and extracted by two methods, HE and OE, revealed that OE showed good result in anti-inflammatory assay by carrageenan method.

The extracts have a yellow color and a pleasant odor. Most of their components could be identified by GC-MS., by comparison (mass fragmentation and retention index) with literatures. The identified compounds are a mixture of oxygenated monoterpenes and sesquiterpenes, *A. fragrantissima* oil is rich with sesquisabinene hydrate, bisabolene epoxide, camphor, and caryophyllene

Figure 1: Structures of some compounds identified from *Achillea fragrantissima*.

oxide; also limonene, menthol, azulene, and thujone are found in moderate amount, while santolina alcohol, lanceol, cedrene, and granny geraniol are found in a minor amounts (Table 1). The essential oil in the OE differs from that in the HE; qualitatively some compounds such as azulene, alpha-bisabolol, and bisbolene epoxide hydrate are found in OE and not in HE, while oxazolidine, viridiflorol, camphor, and thujol are found only in HE; quantitatively some little difference found as in α -humulene and limonene increased in Hexane Extract (HE) than in Oil Extract (OE).

Anti-inflammatory Activity

Anti-inflammatory activity of extracts (OE and HE) was screened in vivo by inhibition of carrageenan-induced rat paw edema method at aa oral dose of 100 mg/kg. Results are presented in Table 2 as percent of inhibition and percent edema, increase at the right hind paw.

Carrageenan is a useful method for studying new drugs uesd in reducing inflammation. Carrageenan-induced rat paw edema is a nonspecific inflammatory agent resulting from a complex of diverse mediators. Edema of this type is more sensitive to nonsteroidal anti-inflammatory drugs. [13]

The results showed significant anti-inflammatory activity, with inhibition in edema in the range of 71%–79.9% after 4 h. The standard drug indomethacin has shown 89.5% inhibition after 4 h., the plant shows high inhibition at a concentration 100 mg/kg, OE shows high inhibition than HE, this may be due to the higher amount of some volatile oil compound present in OE than in HE, such as bisbolene epoxide, alpha-bisabolol, and azulene, these compounds are used as anti-inflammatory agents.

Discussion

Essential oils isolated from aromatic plants have wide applications in perfumery, flavor, cosmetic, and pharmaceutical industries. They have been used since ancient times, and despite many of them being substituted by synthetic ones, the

Table 2: Anti-inflammatory activity of Achillea fragrantissima extracts									
	% Edema				% Inhibition				
Time (H)	1st	2nd	3^{rd}	4th	1st	2nd	3rd	4th	
Control	54.70 ± 2.9	67.11 ± 4.4	79.58 ± 4.1	83.22 ± 4.7					
Indomethacin	49 ± 4.2	$37 \pm 4.1^*$	$23 \pm 3.0*$	$8.6 \pm 0.9*$	10.5	44	70	89	
AF1	58 ± 2.7	49.5 ± 2.3*	30 ± 3.8*	23. \pm 2.3* ^a	0.78	32	54.6	71.9	
AF2	50 ± 2.3	42.8 ± 1.9*	$28 \pm 2.4*$	17 ± 1.7*	2.3	36	58.6	79.4	

AF1: Hexane extract; AF2: oil extract

demand for essential oils obtained from natural sources is increasing, $^{[16]}$ so if the plant contains many important compounds as in *Achillea* plant, it is very important to study the pharmacological activity of the plant. Menthole is a volatile aromatic compound, it is the major constituent of many plants such as eucalyptus, lemongrass, palmarosa and peppermint. The reports proved it have antibacterial and antifungal activity, the study confirmed that, (-)menthol can inhibit the growth of rat liver epithelial tumor cells. $^{[17]}$ Laboratory studies have verified that, menthol can inhibit N-acetyltransferase activity in human hepatoma cells. $^{[18]}$

The LD50 of $\alpha\text{-bisabolol}$ was studied in previous review and it was found it (13.14 g/kg) of body weight orally in adult mice and rats, $^{[19]}$ also other studies show it is known to possess anti-inflammatory and antibiotic, $^{[20,21]}$ gastroprotective, $^{[22]}$ and antioxidant effects. $^{[23]}$ In addition, recent studies showed that $\alpha\text{-bisabolol}$ inhibits the growth and survival of glioblastoma, prostate cancer, breast cancer, and liver cancer in vitro, $^{[24]}$ wherever $\alpha\text{-bisabolol}$ showed no toxicity against normal cells. $^{[25]}$ So the presence of $\alpha\text{-bisabolol}$ in high percent in plant confirmed its important anti-inflammatory activity.

GC-MS analysis revealed the presence of terpenoid compounds (Phorbol, Isochiapin B, stigmasterol acetate, and $\beta\text{-sitosterol}).$ These compounds are well known for their biological activities as anti-insect and antitumor agents.

Studies on $\alpha\text{-bisabolol}$ and $\alpha\text{-bisabolol}$ oxide found in flower of chamomile plant in 1%–2% of volatile oils showed anti-inflammatory and antiphlogistic activity. [26,27]

The bisabolol, bisabolol oxide, mentho, menthol, and β -caryophyllene are the major constituents of the *Achillea* extract so concern the discusses the role of these compounds as antitumor and anti-inflammatory agent.

The results suggested that the excellent performance of essential oil might be attributable to the effects of major constituents or synergistic effects among the constituents. To decipher the mechanism of oil in anti-inflammatory action need more investigation and research.

Conclusion

The aim of the present study was to use essential oils extracted by different methods from *Achillea fragrantissima* (HE and OE) in the manufacture of soap, which can used as anti-inflammatory agent.

The two extracts were analyzed by GC and GC-MS. There are differences in the chemical component of volatile oil of the two extracts.

Acknowledgments

The author thank the Authority of Food and Drug, Saudi Arabia, for the financial support.

REFERENCES

- Balandrin NF, Kinghorn AD, Farnsworth NR. Plant-derived natural products in drug discovery and development: an overview In: (Eds.) Human Medicinal Agents from Plants ACS Symposium Series 534, 1993. pp. 2–12.
- Farnsworth NR. Screening plants for new medicines In(Ed) Biodiversity. Washington, DC: National Academy Press, 1988. pp. 83–97.
- Nemeth E, Bernath J. Biological activities of yarrow species (Achillea spp.). Current Pharmaceutical Design. 2008;14:3151-67. http://dx.doi.org/10.2174/138161208786404281.
- Falk AJ, Smolenski SI, Bauer L, Bell CL. Isolation and identification of three new flavones from Achillea millefolium L. J Pharm Sci. 1975;64: 1838–1842.
- 5. Kharma A, Hassawi D. The antimicrobial activity and the genetic relationship of *Achillea* species. Biotechnology. 2006;5(4):501–7.
- Hamzah M, Mohammad H, Semreen N, Ahmad R. Anti-inflammatory activity of Achelia and Ruscus topical gel on carrageenan-induced paw edema in rats. Acta Poloniae Pharma Drug Res. 2006;63(4):277–80.
- Elsharkawy E, Alshathly M, Mohamed Helal M. Anti-inflammatory and chemical composition of two plants Family Asteraceae growing in Saudi Arabia. J Chem Chem Eng. 2014;8(2):157–62.
- El-Shazly A, Dorai G, Wink M. Composition and antimicrobial activity of essential oil and hexane-ether extract of *Tanacetum santolinoides* (DC.) Feinbr. and Fertig. Z Naturforsch. 2002;57c:620-3.
- El-Shazly A, Dorai G, Wink M. Chemical composition and biological activity of the essential oils of *Senecio aegyptius* var. discoideus Boiss. Z Naturforsch. 2002;57c:434–9.
- Merfort I, Heilmann J, Hagedorn-Leweke U, Lippold BC. In vivo skin penetration studies of camomile flavones. Pharmazie. 1994;49:509–11.
- Cavalieri E, Mariotto S, Fabrizi C. Alpha-bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells. Biochem Biophys Res Commun. 2004;315:589–94.
- Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream, IL: Allured Publ Corp, 1995.

- 13. Agbaje EO, Adeneye AA, Adeleke TI. Anti-nociceptive and antiinflammatory effects of a Nigerian polyherbal tonic (PHT) extract in rodents. Afr J Compl Alt Med. 2008;5(4):399-408.
- The Encyclopaedia Britannica, 15th edn. Encyclopaedia Britannica, Inc. 1979.
- 15. Selinger B. *Chemistry in the Marketplace*, 3rd edn. Sydney; London: Harcourt Brace Jovanovich. 1986.
- 16. Russin WW, Hoesly JD, Elson CE, Tanner MA, Gould MN. Inhibition of rat mammary carcinogenesis by monoterpenoids. Carcinogenesis. 1989:10:2161-4.
- 17. Lin JP, Li YC, Lin WC, Hsieh CL, Chung JG. Effects of (-)-menthol on arylamine N-acetyltransferase activity in human liver tumor cells. Am J Chinese Med. 2011;29:321-9.
- Bhatia SP, McGinty D, Letizia CS. Fragrance material review on Alpha-bisabolol. Food Chem Toxicol. 2008;46(Suppl 11):S72-6.
- 19. Leite GD, Leite LH, Sampaio RD. Alpha-bisabolol attenuates visceral nociception and inflammation in mice. Fitoterapia. 2010;82:208-11.
- 20. Brehm-Stecher BF, Johnson EA. Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob Agents Chemother. 2003;47:3357-60.
- Moura Rocha NF, Venancio ET, Moura BA. Gastroprotection of alpha-bisabolol on acute gastric mucosal lesions in mice: the possible involved pharmacological mechanisms. Fundam Clin Pharmacol. 2010;24:63-71.

- 22. Braga PC, Dal Sasso M, Fonti E, Culici M. Antioxidant activity of baseball: inhibitory effects on chemiluminescence of human neutrophil bursts and cell free systems. Pharmacology. 2009;83:110-5.
- Chen W, Hou J, Yin Y. Alpha-Bisabolol induces dose- and timedependent apoptosis in HepG2 cells via a Fas- and mitochondrialrelated pathway, involves p53 and NFkappaB. Biochem Pharmacol. 2009;80:247-54.
- 24. Cavalieri E, Bergamini C, Mariotto S, Leoni S, Perbellini L, Darra E. Involvement of mitochondrial permeability transition pore opening in alpha-bisabolol induced apoptosis. FEBS J. 2009;
- Sakai H, Misawa M. Effect of sodium azulene sulfonate on capsaicininduced pharyngitis in rats. Basic Clin Pharmacol Toxicol. 2005;96:54-5.
- Peña D, Montes de Oca N, Rojas S. Anti-inflammatory and antidiarrheic activity of Isocarpha cubana Blake. Pharmacol Online. 2006;3:744-9.

How to cite this article: Elsharkawy E. Anti-inflammatory activity and chemical compositions of essential oil of Achillea fragmmentissma. Natl J Physiol Pharm Pharmacol 2016;6:258-262

Source of Support: Nil, Conflict of Interest: None declared.